
 International Journal of Engineering Research

 & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 21

 May- 2015 Volume 2, Issue-3

 ISSN: 2348-4039

 "Sharpening Skills.....

 Serving Nation"

Special Issue: 2nd
 International Conference on Advanced Developments in Engineering and Technology

Held at Lord Krishna College of Engineering Ghaziabad, India

Security concerns for the Choice of Distributed Database Management System

Model: Relational vs. Object-Oriented

Garima Bhardwaj, Priyanka Sharma

Assistant Professor

L.K.C.E, Ghaziabad

ABSTRACT

Object-Oriented Data Base Management Systems (OODBMS) and Relational Database Management Systems

(RDBMS) share a common goal; to manage and protect mission critical data used by applications and

individuals. In this regard it appears that any problem that may be solved by one database system may be solved

by the other. This conception is not true. There are fundamental technical differences between OODBMS and

RDBMS that make certain classes of problems tractable by OODBMS but not by RDBMS and vice versa.

Productivity differences in application development between using an OODBMS or a RDBMS are sourced by

these same fundamental technical dissimilarities. OODBMS possess certain features not provided by RDBMS

that allow applications to offer benefits that would otherwise not be possible. The rapid growth of the

networking and information-processing industries has led to the development of distributed database

management system prototypes and commercial distributed database management systems (DDBMS).

When choosing between the object-oriented model and the relational model for the development of distributed

database, many factors should be considered. The most important of these factors are the various security

concerns that includes single level and multilevel access controls, protection against data observation and

inference, and maintenance of integrity When determining which distributed database model will be more

secure for a particular application, the decision should not be made purely on the basis of available security

features in both models, but the strength and efficiency of the delivery of these features should also be

considered. Do the features provided by the database model provide adequate security for the proposed

application? Does the implementation of the security controls add an unacceptable amount of computational

overhead? This paper reviewed the security concerns of distributed databases. Also, the security strengths and

weaknesses of both database models (relational and object oriented) are discussed.

Keywords: OODBMS, RDBMS, DDBMS,.

1. 1. INTRODUCTION
The rapid growth of the networking and information-processing industries has led to the development

of distributed database management system prototypes and commercial distributed database management

systems. A distributed system varies from a centralized system in one key respect: the database is stored in

geographically separate sites which are inter-connected by some communication media. The aim of a

distributed database management system (DDBMS) is to process and communicate data in an efficient

and cost-effective manner. It has been recognized that such distributed systems are vital for the efficient

processing required in military as well as commercial applications. Distributed database management

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 22

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

systems are subject to many security threats additional to those present in a centralized database management

system (DBMS). For many of these applications it is especially important that the DDBMS should

provide multi-level security. For example, the DDBMS should allow users who are cleared at different

security levels access to the database consisting of data at a variety of sensitivity levels without

compromising security.

For the past several years the most prevalent database model has been relational. Relational Database

Management Systems (RDBMSs) have been very successful, but their success is limited to certain types of

applications. As business users expand to newer types of applications, and grow older ones, their attempts to use

RDBMS encounter the "Relational Wall," where RDBMS technology no longer provides the performance and

functionality needed. This wall is encountered when extending information models to support relationships,

new data types, extensible data types, and direct support of objects. Similarly, the wall appears when deploying

in distributed environments with complex operations. ODBMSs offer a path beyond the wall. While the

relational model has been particularly useful, its utility is reduced if the data does not fit into a relational table.

Many organizations have data requirements that are more complex than can be handled with these data types.

Relational databases typically treat complex data types as BLOBs (binary large objects). For many users, this is

inefficient since BLOBs cannot be queried. In addition, database developers have had to contend with the

hindrance mismatch between the third generation language (3GL) and structured query language (SQL). The

hindrance mismatch occurs when the 3GL command set conflicts with SQL. There are two types of hindrance

mismatches: (1) Data type inconsistency: A data type recognized by the relational database is not recognized by

the 3GL. For example, most 3GLs don’t have a data type for dates.(2) Data manipulation inconsistency: Most

procedural languages read only one record at a time, while SQL reads records a set at a time. This problem is

typically overcome by embedding SQL commands in the 3GL code. Solutions to both hindrance problems add

complexity and overhead. Object-oriented databases have been developed in response to the problems listed

above: They can fully integrate complex data types, and their use eliminates the hindrance mismatch. However,

OODBMS has been created to address the growing complexity of the data stored in present database systems,

but the development of adequate distributed database security has been complicated by this model. The security

procedures in relational database model are more mature than the procedures in object oriented model. This is

due to the fact that object-oriented databases are relatively new.

This paper will review the security concerns of distributed databases. Also, the security problems found in both

models (relational and object oriented) will be discussed. Conclusively, we will compare the relative merits of

each model with respect to security

.2. Background

2.1. Conventional Database Security aspects

Following are the requirements that must be satisfied by a secure single site database as well as a distributed

database:

1. Physical Integrity (protection from data loss caused by power failures or natural disaster)

2. Logical integrity (protection of the logical structure of the database)

3. Availability

4. Data Accuracy

5. Access control (up to some degree depending on the data sensitivity)

6. Authentication

7. Protection of data from inference

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 23

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

Here, the requirements 4-7 are directly affected by the choice of database model. The principal goal of these

requirements is to ensure data protection from unauthorized observation or inference, unauthorized

modification, and from inaccurate updates. This can be accomplished by using access controls, concurrency

controls, updates using the two-phase commit procedure (this avoids integrity problems resulting from physical

failure of the database during a transaction), and inference reduction strategies (discussed in the next section).

The level of access restriction depends on the sensitivity of the data and the degree to which the developer

adheres to the principal of least privilege. A lattice is maintained in the DBMS that stores the access privileges

of individual users. When a user logs on, the interface obtains the specific privileges for the user.

According to Pfleeger [Pflee89], access permission may be affirmed on the satisfaction of one or more of the

following criteria: (1) Availability of data: Unavailability of data is caused by the locking of a particular data

element by another subject, which forces the requesting subject to wait in a queue. (2) Acceptability of access:

Only authorized users may view and or modify the data. In a single level system, it is relatively easy to

implement. If the user is unauthorized, the operating system does not allow system access. On a multilevel

system, access control is considerably more difficult to implement, because the DBMS must enforce the

unrestricted access privileges of the user. (3) Assurance of authenticity: This includes the restriction of access to

normal working hours to help ensure that the registered user is genuine. It also includes a usage analysis which

is used to determine if the current use is consistent with the needs of the registered user, thereby reducing the

probability of a fishing expedition or an inference attack.

Concurrency controls help to ensure the integrity of the data. It is the activity of coordinating concurrent

accesses to a database in a multi-user database management system. These are particularly important in the

effective management of a distributed system. Bell and Grisom [BellGris92] identify three possible sources of

concurrency problems: (1) Lost update: A successful update was inadvertently erased by another user. (2)

Unsynchronized transactions that violate integrity constraints. (3)Unrepeatable read: Data retrieved is inaccurate

because it was obtained during an update. Each of these problems can be reduced or eliminated by

implementing a suitable locking scheme (only one subject has access to a given entity for the duration of the

lock) or a timestamp method (the subject with the earlier timestamp receives priority) [BellGris92].

Protection from inference is one of the unsolved problems in secure multilevel database design.

Pfleeger[Pflee89] lists several inference protection strategies. These include data suppression, logging every

move users make (in order to detect behavior that suggests an inference attack), and perturbation of data. As we

will discuss later, the only practical strategy for the distributed environment that maintains data accuracy is

suppression.

2.2. Security Aspects specific to Distributed Database Management Systems

2.2.1. Preserving data integrity in distributed database

According to Bell and Grisom [BellGris92], preservation of integrity is much more difficult in a heterogeneous

distributed database than in a homogeneous one. The degree of central control dictates the level of difficulty

with integrity constraints (enforcing the rules of the individual organization). The homogeneous distributed

database has identical DBMS schema so can have strong central control. If the nodes in the distributed network

are heterogeneous (the DBMS schema and the associated organizations are dissimilar), several problems

can arise that will threaten the integrity of the distributed data. The listed problems are:

1. Inconsistencies between local integrity constraints,

2. Difficulties in specifying global integrity constraints,

3. Inconsistencies between local and global constraints [BellGris92].

Bell and Grisom described that local integrity constraints are bound to differ in a heterogeneous distributed

database. The differences branches from differences in the individual organizations. Implementation of global

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 24

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

integrity constraints can eliminate conflicts between individual databases. Yet these are not always easy to

implement.

Global integrity constraints on the other hand are separated from the individual organizations. It may not always

be practical to change the organizational structure in order to make the distributed database consistent.

Ultimately, this will lead to inconsistencies between local and global constraints. Conflict resolution depends on

the level of central control. If there is strong global control, the global integrity constraints will take precedence.

If central control is weak, local integrity constraints will.

2.2.2. Centralized or Decentralized Authorization

While developing a distributed database, one of the key points is to find is the system access point. Bell and

Grisom [BellGris92] explained two strategies: (1) Users are granted system access at their home site. (2) Users

are granted system access at the remote site.

The first case is easier to handle. It is similar to implement a centralized access strategy. Bell and Grisom point

out that the success of this strategy depends on reliable communication between the different sites (the remote

site must receive all of the necessary clearance information). Since, in distributed environment many different

sites can grant access, the probability of unauthorized access increases. Once one site has been compromised,

the entire system is compromised. Maintaining access control for all users at each site may reduce the impact of

the compromise of a single site (provided that the intrusion is not the result of a stolen password).

The second strategy, while perhaps more secure, has several disadvantages. Probably the most glaring is the

additional processing overhead required, particularly if the given operation requires the participation of several

sites. Furthermore, the maintenance of duplicated clearance tables is computationally expensive and more prone

to error. Also, the replication of passwords, even though they're encrypted, increases the risk of theft.

A third policy offered by Woo and Lam [WooLam92] centralizes the granting of access privileges at nodes

called policy servers. These servers are arranged in a network. When a policy server receives a request for

access, all members of the network determine whether to authorize the access of the user. Woo and Lam

believes that separating the approval system from the application interface reduces the probability of

compromise.

3. Security in Relational Database

3.1. Relational Database

The relational model is a database model that is based on first order predicate logic, first formulated and

proposed in 1969 by Edgar F. Codd. The purpose of the relational model is to provide a declarative method for

specifying data and queries: users directly state what information the database contains and what information

they want from it, and let the database management system software take care of describing data structures for

storing the data and retrieval procedures for answering queries. The fundamental assumption of the relational

model is that all data is represented as mathematical n-ary relations, an n-ary relation being a subset of

the Cartesian product of n domains. The relational model of data permits the database designer to create a

consistent, logical representation of information. Consistency is achieved by including declared constraints in

the database design, which is usually referred to as the logical schema. The theory includes a process

of database normalization whereby a design with certain desirable properties can be selected from a set of

logically equivalent alternatives. The access plans and other implementation and operation details are handled

by the DBMS engine, and are not reflected in the logical model.

3.2. Security Aspects

3.2.1. Access Controls

The most common form of access control in a relational database is the view. The view is a logical table, which

is created with the SQL VIEW command. This table contains data from the database obtained by SQL

http://en.wikipedia.org/wiki/Declarative_programming
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Arity
http://en.wikipedia.org/wiki/Relation_(database)
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Cartesian_product
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Constraint_(database)
http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/Logical_equivalence
http://en.wikipedia.org/wiki/Access_plan
http://en.wikipedia.org/wiki/DBMS

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 25

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

commands such as JOIN and SELECT. If the database is unclassified, the source for the view is the entire

database. If, on the other hand, the database is subject to multilevel classification, then the source for the view is

that subset of the database that is at or below the classification level of the user. Users can read or modify data

in their view, but the view prohibits users from accessing data at a classification level above their own. In fact,

if the view is properly designed, a user at a lower classification level will be unaware that data exists at a higher

classification level [Denn87a]

In order to define what data can be included in a view source, all data in the database must be access classified.

Denning [Denn87a] lists several potential access classes that can be applied. These include:

(1) Type dependent: based on the attribute associated with the data. (2) Value dependent: based on the value of

the data. (3) Source level: Classification of the new data is set equivalent to the classification of the data source.

(4) Source label: The data is arbitrarily given a classification by the source or by the user who enters the data.

Classification of data and development of legal views become much more complex when the security goal

includes the reduction of the threat of inference attacks. Inference is typically made from data at a lower

classification level that has been derived from higher level data. The key to this relationship is the derivation

rule, which is defined as the operation that creates the derived data (for example, a mathematical equation). A

derivation rule also specifies the access class of the derived data. To reduce the potential for inference, however,

the data elements that are inputs to the derivation must be examined to determine whether one or more of these

elements are at the level of the derived data. If this is the case, no inference problem exists. If, however, all the

elements are at a lower level than the derived data, then one or more of the derivation inputs must be promoted

to a higher classification level [Denn87a].

The use of classification constraints to counter inference, beyond the protections provided by the view, requires

additional computation. Thuraisingham and Ford [ThurFord95] discuss one way that constraint processing can

be implemented. In their model, constraints are processed in three phases. Some constraints are processed

during design (these may be updated later), others are processed when the database is queried to authorize

access and counter inference, and many are processed during the update phase. Their strategy relies on two

inference engines, one for query processing and one for update processing. According to Thuraisingham and

Ford, the key to this strategy is the belief that most inferential attacks will occur as a result of summarizing a

series of queries (for example, a statistical inference could be made by using a string of queries as a sample) or

by interpreting the state change of certain variables after an update. The inference engine for updates

dynamically revises the security constraints of the database as the security conditions of the organization change

and as the security characteristics of the data stored in the database change. The inference engine for query

processing evaluates each entity requested in the query, all the data released in a specific period that is at the

security level of the current query, and relevant data available externally at the same security level. This is

called the knowledge base. If the user’s security level dominates the security levels of all of the potential

inferences in knowledge base, the response is allowed [ThurFord95].

3.2.2. Data Integrity

The integrity constraints in the relational model can be divided into two categories: (1) implicit constraints and

(2) explicit constraints. Implicit constraints which include domain, relational, and referential constraints enforce

the rules of the relational model. Explicit constraints enforce the rules of the organization served by the DBMS.

Pfleeger [Pflee89] lists several error detection methods, such as parity checks, that can be enforced by explicit

constraints. Local integrity constraints are the examples of explicit constraints. Typically, explicit constraints are

implemented using the SQL ASSERT or TRIGGER commands. ASSERT statements are used to prevent an

integrity violation. Therefore, they are applied before an update. The TRIGGER acts as a response activation

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 26

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

mechanism. If a problem with the existing database is detected (for example, an error is detected after a parity

check), then a predefined action is initiated [BellGris92].

3.3. Security Aspects specific to Distributed Relational Database System

3.3.1. Access control using Global Views

As in the centralized relational database, access control in the distributed environment is accomplished with the

view. In distributed database, view is developed from the global relations, instead of developing the view from

local relations. So, it is referred to as a global view. The view mechanism is even more important in the

distributed environment because the problem is typically more complex (more users and a more complex

database) and while centralized databases may not be maintained as multilevel access systems, a distributed

database is more likely to require the suppression of information [BellGris92].

Although global views are effective at data suppression and to a lesser extent at inference protection, their use

can be computationally expensive. One of the key problems with a relational distributed database is the

computation required to execute a complex query (particularly one with several JOINs, which join tables and

table fragments that are stored at geographically separate locations).

3.3.2. Multilevel Constraint Processing in a Distributed Environment

In an effort to provide additional inference protection beyond the global view, Thuraisingham and Ford extend

their classification constraint processing model to the distributed environment. As with the centralized model,

inference engines are added to the standard distributed database architecture at each site. Their model assumes

that the distributed database is homogeneous. In this case, the inference engines at the user's site processes the

query and update constraints. Only a small amount of overhead is added [ThurFord95]. If the distributed

database is heterogeneous, however, then the processing overhead would be prohibitively expensive since the

inference engines at each site involved in the action would need to process the security constraints for all the

local data. Considering the processing demands already in place in a relational database management system

(RDBMS), this appears to be impractical.

4. Object-oriented Database Security

4.1. Object-oriented Databases

An object-oriented database management system (OODBMS) is a database management system that supports

the modeling and creation of data as objects. An object is defined by a class. This includes some kind of support

for classes of objects and the inheritance of class properties and methods by subclasses and their objects.

An object is composed of two basic elements: variables and methods. An object holds three basic variables

types: (1) Object class: This variable keeps a record of the parent class that defines the object. (2) Object ID

(OID): A record of the specific object instance. The OID is also kept in an OID table. The OID table provides a

map for finding and accessing data in the object-oriented database. (3) Data stores: These variables store data in

much the same way that attributes store data in a relational tuple [MilLun92].

Methods are the actions that can be performed by the object and the actions that can be performed on the data

stored in the object variables. Methods perform two basic functions: They communicate with other objects and

they perform reads and updates on the data in the object. All control for access, modification, and integrity start

at the object level.

http://searchsoa.techtarget.com/definition/object
http://whatis.techtarget.com/definition/0,,sid9_gci211790,00.html
http://searchcio-midmarket.techtarget.com/definition/inheritance
http://searchcio-midmarket.techtarget.com/definition/method

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 27

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

Schematic view of the object-oriented model

4.2. Security Aspects

4.2.1. Access Controls

As with the relational model, access is controlled by classifying elements of the database. The basic element of

this classification is the object. Access permission is granted if the user has sufficient security clearance to

access the methods of an object. Millen and Lunt [MilLun92] describe a security model that effectively explains

the access control concepts in the object-oriented model. Their model is based on six security properties:

Property 1 (Hierarchy Property): The level of an object must dominate that of its class object.

Property 2 (Subject Level Property): The security level of a subject dominates the level of the invoking subject

and it also dominates the level of the home object.

Property 3 (Object Locality Property): A subject can execute methods or read or write variables only in its

home object.

Property 4 (*-Property): A subject may write into its home object only if its security is equal to that of the

object.

Property 5 (Return value property): A subject can send a return value to its invoking subject only if it is at the

same security level as the invoking subject.

Property 6 (Object creation property): The security level of a newly-created object dominates the level of the

subject that requested the creation [MilLun92].

Property 1 ensures that the object that inherits properties from its parent class has at least the same classification

level as the parent class. If this were not enforced, then users could gain access to methods and data for which

they do not have sufficient clearance. Property 2 ensures that the subject created by the receiving object has

sufficient clearance to execute any action from that object. Hence, the classification level given to the subject

must be equal to at least the highest level of the entities involved in the action. Property 3 enforces

encapsulation. If a subject wants to access data in another object, a message must be sent to that object where a

new subject will be created. Property 6 states that new objects must have at least as high a clearance level as the

subject that creates the object. This property prevents the creation of a covert channel. Properties 4 and 5 are the

key access controls in the model. Property 4 states that the subject must have sufficient clearance to update data

in its home object. If the invoking subject does not have as high a classification as the called object's subject, an

update is prohibited. Property 5 ensures that if the invoking subject from the calling object does not have

sufficient clearance, the subject in the called object will not return a value. The object-oriented model and the

relational model minimize the potential for inference in a similar manner. Remaining consistent with

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 28

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

encapsulation, the classification constraints are executed as methods. If a potential inference problem exists,

access to a particular object is prohibited [MilLun92].

4.2.2. Integrity

As with classification constraints, integrity constraints are also executed at the object level [MilLun92]. These

constraints are similar to the explicit constraints used in the relational model. The difference is in execution. An

object-oriented database maintains integrity before and after an update by executing constraint checking

methods on the affected objects. As we saw in section 4.1.2., a relational DBMS takes a more global approach.

One of the benefits of encapsulation is that subjects from remote objects do not have access to a called object's

data. This is a real advantage that is not present in the relational DBMS. Herbert [Her94] notes that an object

oriented system derives a significant benefit to database integrity from encapsulation. This benefit stems from

modularity. Since the objects are encapsulated, an object can be changed without affecting the data in another

object. So, the process that contaminated one element is less likely to affect another element of the database.

4.3. Security Aspects specific to Distributed Object Oriented Database System

Sudama [Sud95] states that there are many restrictions to the successful implementation of a distributed object-

oriented database. The organization of the object-oriented DDBMS is more difficult than the relational

DDBMS. In a relational DDBMS, the role of client and server is maintained. This makes the development of

multilevel access controls easier. Since the roles of client and server are not well defined in the object-oriented

model, control of system access and multilevel access is more difficult. System access control for the object-

oriented DDBMS can be handled at the host site in a procedure similar to that described for the relational

DDBMS. Since there is no clear definition of client and server, however, the use of replicated multisite approval

would be impractical. Multilevel access control problems arise when developing effective and efficient

authorization algorithms for subjects that need to send messages to multiple objects across several

geographically separate locations. According to Sudama [Sud95], there are currently no universally accepted

means for enforcing subject authorization in a pure object-oriented distributed environment. This means that,

while individual members have developed their own authorization systems, there is no pure object-oriented

vendor-independent standard which allows object-oriented database management systems (OODBMS) from

different vendors (a heterogeneous distributed system) to communicate in a secure manner. Without subject

authorization, the controls described in the previous section cannot be enforced. Since inheritance allows one

object to inherit the properties of its parent, the database is easily compromised. So, without effective standards,

there is no way to enforce multilevel classification. Sudama [Sud95] notes that one standard does exist, called

OSF DCE (Open Software Foundation's Distributed Computing Environment), that is vendor-independent, but

is not strictly an object-oriented database standard. While it does provide subject authorization, it treats the

distributed object environment as a client/server environment as is done in the relational model. He points out

that this problem may be corrected in the next release of the standard. The major integrity concern in a

distributed environment that is not a concern in the centralized database is the distribution of individual objects.

Recall that a RDBMS allows the fragmentation of tables across sites in the system. It is less desirable to allow

the fragmentation of objects because this can violate encapsulation. For this reason, fragmentation should be

explicitly prohibited with an integrity constraint [Her94].

5. Comparative study

We have seen that the choice of database model significantly affects the implementation of database system

security. Each model has strengths and weaknesses. It is clear that more research has been completed for

securing centralized databases. Sound security procedures exist for the centralized versions of both models.

Both have procedures available that protect the secrecy, integrity, and availability of the database. For example,

multilevel relational DBMS use views created at the system level to protect the data from unauthorized access.

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 29

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

OODBMS, on the other hand, protect multilevel data at the object level through subject authorization and

limitation of access to the object’s methods. The principle unsolved problem in centralized databases is

inference. The current strategies do not prevent all forms of inference and those suggested by Thuraisingham

and Ford are computationally cumbersome. Given that both models have well-developed security procedures,

the choice of DBMS model in a centralized system could be made independent of the security issue. The same

cannot be said of distributed databases. The relational model currently has a clear edge in maintaining security

in the distributed environment. The main reason for the disparity between the two models is the relative

immaturity of the distributed object-oriented database. The relational model, however is not without problems:

The processing of global views in a heterogeneous environment takes too long, and the enforcement of database

integrity in a heterogeneous environment is problematic because of the conflicts between local and global

integrity constraints. The lack of completely compatible, vendor-independent standards for the distributed

OODBMS relegates this model to a promised, yet not completely delivered, technology. If the distributed

environment is homogeneous, the implementation of subject authorization should be possible. For the

heterogeneous distributed OODBMS, however, the absence of universally accepted standards will continue to

hamper security efforts.

6. Conclusion and Opportunities for Further Research

We have discussed database security issues in general and how the database model affects database system

security in particular. We have seen that security protections for OODBMS and RDBMS are quite different.

Each model has significant strengths and weaknesses. Currently, the RDBMS is the better choice for a

distributed application. This is due to the relative maturity of the relational model and the existence of

universally accepted standards. The recent emergences of hybrid models that combine the features of the two

models discussed raise many new security questions. For example, Informix’s Illustra combines a relational

database schema with the capability to store and query complex data types. They call this system an “object-

relational database.” Informix claims that their system has all the capabilities of a RDBMS, including “standard

security controls” with the principle advantage of an OODBMS: encapsulation, inheritance, and direct data

access through the use of data IDs [Inf96].

This hybrid and similar systems offered by Oracle and others raise many new questions. For example, do the

relational database security controls work well with complex data types and objects? How well do these security

controls interface with encapsulation and object methods? What new avenues of attack have been opened by the

combination of these two seemingly different concepts? What special security problems will arise when the

object relational system is extended to the distributed environment?

In addition to the questions raised above, there are also opportunities for research in several other areas. They

include subject authorization strategies for heterogeneous distributed systems, inference prevention strategies

for both centralized and distributed database systems, and distributed object-oriented database security

standards.

International Journal Of Engineering Research & Management Technology

 Email: editor@ijermt.org www.ijermt.org

Lord Krishna College of Engineering (An ISO 9001:2008 Certified Institute) Ghaziabad, Uttar Pradesh, INDIA. Page 30

 ISSN: 2348-4039

 May- 2015 Volume 2, Issue-3

REFERENCES

1. [Bellgris92] Bell, David And Jane Grisom, Distributed Database Systems. Workinham, England: Addison Wesley,1992.

2. [Bert92] Bertino, Elisa, “Data Hiding And Security In Object-Oriented Databases,” In Proceedings Eighth International

Conference On Data Engineering, 338-347, February 1992.

3. [Denn87a] Denning, Dorothy E. Et Al., “Views For Multilevel Database Security,” In Ieee Transactions On Software

Engineering, Vse-13 N2, Pp. 129-139, February 1987.

4. [Denn87b] Denning, Dorothy. E. Et Al., “A Multilevel Relational Data Model”. In Proceedings Ieee Symposium On Security

And Privacy, Pp. 220-234,1987.

5. [Haig91] Haigh, J. T. Et Al., “The Ldv Secure Relational Dbms Model,” In Database Security, Iv: Status And Prospects, S.

Jajodia And C.E. Landwehr Eds., Pp. 265-269, North Holland: Elsevier, 1991.

6. [Her94] Herbert, Andrew, “Distributing Objects,” In Distributed Open Systems, F.M.T. Brazier And D. Johansen Eds., Pp.

123-132, Los Alamitos: Ieee Computer Press, 1994.
7. [Inf96] “Illustra Object Relational Database Management System,” Informix White Paper From The Illustra Document

Database, 1996.

8. [Jajsan90] Jajodia, Sushil And Ravi Sandhu, “Polyinstantiation Integrity In Multilevel Relations,” In Proceedings Ieee

Symposium On Research In Security And Privacy, Pp. 104-115, 1990.

9. [Millun92] Millen, Jonathan K., Teresa F. Lunt, “Security For Object-Oriented Database Systems,” In Proceedings

10. Ieee Symposium On Research In Security And Privacy, Pp. 260-272,1992.

11. [Mull94] Mullins, Craig S. “The Great Debate, Force-Fitting Objects Into A Relational Database Just Doesn’t Work Well.

The Impedance Problem Is At The Root Of The Incompatibilities.” Byte, V19 N4, Pp. 85-96, April 1994.

12. [Sud95] Sudama, Ram, “Get Ready For Distributed Objects,” Datamation, V41 N18, Pp. 67-71, October 1995.

13. [Thurford95] Thuraisingham, Bhavani And William Ford, “Security Constraint Processing In A Multilevel Secure

14. Distributed Database Management System,” Ieee Transactions On Knowledge And Data Engineering, V7 N2, Pp. 274-293,
April 1995.

15. [Woolam92] Woo, Thomas Y. C., And Simon S. Lam, “Authorization In Distributed Systems: A Formal Approach,” In

Proceedings 1992 Ieee Symposium On Research In Security And Privacy, Pp. 33-51,1992.

